Đồ án ứng dụng MATLAB trong giải mạch điện

Đồ án ứng dụng MATLAB trong giải mạch điện

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (441.47 KB, 39 trang )

MỤC LỤC
Trang
MỞ ĐẦU
LỜI CẢM ƠN
Chương 1. TỔNG QUAN VỀ MATLAB ………………………………………3
1.1. Bắt đầu với Matlab ………….……………………………………………. 3
1.2. Các khái niệm cơ bản………………………………………………………6
1.3. Các hàm toán học…………………………………………………………. 9
Chương 2. MẠCH ĐIỆN TUYẾN TÍNH Ở CHẾ ĐỘ XÁC LẬP ……………10
2.1. Mạch điện tuyến tính ở chế độ xác lập ..……………………………..….10
2.2. Một số phương pháp giải mạch điện tuyến tính ở chế độ xác lập ……….11
Chương 3. XÂY DỰNG THUẬT TOÁN PHÂN TÍCH MẠCH …………..18
3.1. Bài toán ……………………………………………….…………………..18
3.2. Thuật toán phân tích mạch……………………………………………….18

Chương 4. KIỂM TRA VỚI MATLAB ……………………………..…….25
4.1. Ví dụ…………………………………………………………………….. 25
4.2. Kiểm tra bằng Matlab…………………………………………………… 27
KẾT LUẬN
TÀI LIỆU THAM KHẢO

1

Mở đầu
Trong chuyên ngành Kỹ thuật điều khiển và Tự động hóa, lý thuyết mạch
điện là một học phần quan trọng. Là cơ sở để sinh viên nắm vững và hiểu được
các nguyên lý, nguyên tắc trong xây dựng, tính toán mạch điện, từ đó giúp sinh
viên có thể đi sâu học tập, nghiên cứu các học phần là đặc thù của ngành.
Với sự giảng dạy của thầy, cô bộ môn học phần lý thuyết mạch bản thân em
đã phần nào nắm vững cơ lý thuyết, phương pháp để giải các bài tập mạch điện.

Song với số lượng bài tập lớn, khối lượng tính toán nhiều, phải thường xuyên
làm việc với những mạch điện phức tạp ở các chế độ khác nhau. Vì vậy việc
tính toán để giải một bài tập lý thuyết mạch thường mất khá nhiều thời gian,
trong quá trình tính toán có thể mắc nhiều sai lầm dẫn đến kết quả thu được
không chính xác.
Qua quá trình tìm hiểu về phần mềm mô phỏng Matlab & Simulink, với
những ứng dụng thiết thực, rộng lớn của nó ở rất nhiều lĩnh vực khoa học – kỹ
thuật nói chung và đặc biệt đối với kỹ sư điều khiển – tự động hóa, cụ thể hơn là
việc hỗ trợ giải bài toán mạch điện. Với mục đích tìm ra phương pháp giải bài
tập về mạch tuyến tính nhanh chóng và chính xác, đề tài “Ứng dụng Matlab
trong giải mạch điện tuyến tính ở chế độ xác lập” được hình thành.

Lời cảm ơn
2

Để hoàn thành được đồ án với đề tài “ Ứng dụng Matlab trong giải mạch
điện tuyến tính ở chế độ xác lập”, với sự nỗ lực của bản thân, em đã vận dụng
những kiến thức được học, được trang bị từ thầy cô giảng dạy tại giảng đường,
sự tìm tòi học hỏi, cùng sự thu thập thông tin liên quan tới đề tài. Bên cạnh đó
em luôn nhận dược sự hướng dẫn, giúp đỡ tận tình của các thầy cô và sự góp ý
của các bạn trong nhóm đồ án.
Em xin gửi lời cảm ơn chân thành tới thầy. Người đã hướng dẫn em làm đồ
án này, thầy đã giúp đỡ, tạo mọi điều kiện thuận lợi để em hoàn thành được đồ
án.
Lần đầu tiên thực hiện làm một đồ án, với thời gian và khả năng kiến thức
còn hạn chế, đồ án không thể tránh khỏi những thiếu sót. Em xin nhận được
những nhận xét, góp ý từ thầy cô và các bạn.
Em xin chân thành cảm ơn!

Chương 1:
3

TỔNG QUAN VỀ MATLAB
1.1.1. BẮT ĐẦU VỚI MATLAB
1.1.2. Giới thiệu chung
MATLAB là một bộ phần mềm dùng để tính toán các bài toán kỹ thuật,
được viết bằng ngôn ngữ C do hãng Math Works Inc sản xuất. Nó được tạo trên
cở sở những phần mềm do các nhà lập trình của các dự án LINPACK và
EISPACK viết ra bằng ngôn ngữ Fortran dùng cho việc thực hiện các phép tính
và thao tác trên ma trận.
Tên của phần mềm MATLAB là chữ viết tắt của ‘Matrix Laboratory’ có
nghĩa là ‘phương pháp ma trận’. Đến khi thực hành sử dụng phần mềm ta sẽ
thấy mỗi phần tử cơ bản của Matlab là một ma trận. Phần mềm Matlab liên tục
được bổ sung và hoàn thiện.
Các ứng dụng điển hình của Matlab:

Toán học và tính toán.
Phát triển thuật toán.
Tạo mô hình, mô phỏng và giao thức.
Khảo sát, phân tích số liệu.
Đồ họa khoa học kỹ thuật.
Phát triển ứng dụng, gồm cả giao diện người dùng đồ họa GUI.
Thiết kế các hệ thống điều khiển trong thời gian thực.

Matlab cung cấp cho ta các phương pháp theo hướng chuyên dụng hóa được
gọi là các Toolbox (hộp công cụ). Các Toolbox cho phép người sử dụng học và
áp dụng các kỹ thuật chuyên dụng cho một lĩnh vực nào đó. Toolbox là một tập

hợp toàn diện các hàm của matlab (M-file) cho phép mở rộng môi trường
Matlab để giải các lớp bài toán cụ thể. Các lĩnh vực trong đó có sẵn các Toolbox
bao gồm: xử lý tín hiệu, hệ thống điều khiển, mạng noron, mô phỏng…
Hệ thống Matlab gồm có 5 phần chính:

4

– Ngôn ngữ Matlab: là một ngôn ngữ ma trận, mảng cấp cao với các câu
lệnh, hàm, cấu trúc dữ liệu vào/ra, các tính năng lập trình đối tượng. Nó
cho phép lập trình các ứng dụng từ nhỏ đến các ứng dụng lớn, từ ứng
dụng đơn giản đến phức tạp.
– Môi trường làm việc của Matlab: đây là một bộ các công cụ và phương
tiện mà bạn sử dụng với tư cách người dùng hoặc người lập trình Matlab.
Nó bao gồm các phương tiện cho việc quản lý các biến trong không gian
làm việc Workspace cũng như xuất nhập dữ liệu. Nó cũng bao gồm các
công cụ để phát triển quản lý, gỡ rối và định hình M – file.
– Xử lý đồ họa: đây là một hệ thống đồ họa của Matlab. Nó bao gồm các
lệnh cao cấp cho trực quan hóa dữ liệu hai chiều và ba chiều, xử lý ảnh,
ảnh động,… Nó cũng cung cấp các lệnh cấp thấp cho phép bạn tùy biến
giao diện đồ họa cũng như đi xây dựng một giao diện đồ họa hoàn chỉnh
cho ứng dụng Matlab của mình.
– Thư viện toán học Matlab: đây là một thuật toán khổng lồ các thuật toán
tính toán từ các hàm cơ bản cộng, trừ, nhân, chia, sin, cos, số học phức…
tới các hàm phức tạp hơn như: nghịch đảo, ma trận, tìm giá trị riêng của
ma trận, phép biến đổi fourier nhanh.
– Giao diện chương trình ứng dụng Matlab API ( Application Program
Interface): đây là một thư viện cho phép ta viết các chương trình C và
Fortran tương thích với Matlab.
Simulink là một chương trình đi kèm với Matlab, là một hệ thống tương tác

với việc mô phỏng các hệ thống động học phi tuyến. Nó là một chương trình đồ
họa sử dụng chuột để thao tác cho phép mô hình hóa một hệ thống bằng cách
vẽ một sơ đồ khối trên màn hình. Nó có thể làm việc với các hệ thống tuyến
tính, phi tuyến, hệ thống liên tục theo thời gian, hệ thống gián đoạn theo thời
gian, hệ thống đa biến…
1.1.3. Giao diện

5

Command Window: Đây là cửa sổ làm việc chính của MATLAB. Tại đây ta
thực hiện tòan bộ việc nhập dữ liệu và xuất kết quả tính tóan. Dấu nháy >> báo
hiệu chương trình sẵn sàng cho việc nhập dữ liệu. Ta kết thúc việc nhập dữ liệu
bằng cách nhấn phím Enter. MATLAB sẽ thực thi dòng lệnh mà ta nhập vào
Command Window và trả kết quả trong Command Window.
Command History: Lưu lại tất cả các lệnh mà ta đã nhập vào trong
Command Window. Ta có thể xem lại tất cả các lậnh bằng cách dùng scroll bar,
hay thực hiện lại lệnh đó bằng cách nhấp kép lên dòng lệnh. Ngòai ra ta còn có
thể cut, paste, delete các lệnh.
Workspace browser: trong MATLAB các dữ liệu được lưu trong biến.
Workspace browser liệt kê tất cả các biến mà ta đang sử dụng trong MATLAB.
Nó cung cấp thông tin về kích thước, loại dữ liệu. Ta có thể truy cập trực tiếp
vào dữ liệu bằng cách nhấn kép vào biến để hiển thị Array editor.
Launch pad: cho phép người dùng truy cập nhanh vào các bộ Toolbox, phần
Help.
1.1.4. Một số thao tác cơ bản trong Matlab

6

Trong MATLAB, thanh trình đơn thay đổi tùy theo cửa sổ mà ta lựa chọn.
Tuy vậy các trình đơn File, Desktop, Window, Help có mặt hầu hết trong các
thanh trình đơn.
Trình đơn File:
• New: tạo một đối tượng mới (biến, m-file, figure, model, GUI).
• Open: mở một file theo định dạng của MATLAB (*.m, *.mat, *.mdl)
• Import data…: nhập dữ liệu từ các file khác vào MATLAB.
• Save workspace…: lưu các biến trong MATLAB vào file *.mat.
• Set path: khai báo các đường dẫn của các thư mục chứa các m-file.
• Preferences: thay đổi các định dạng về font, font size, color cũng như các
tùy chọn cho Editor, Command Window v.v.
• Page Setup: định dạng trang in.
• Print: in.
Trình đơn Desktop:
• Desktop layout: sắp xếp các cửa sổ trong giao diện.
• Save layout: lưu cách sắp xếp cửa sổ.
Trình đơn Window dùng để kích họat (activate) cửa sổ.
Nút Start cung cấp shortcut tới các công cụ trong MATLAB
1.2. CÁC KHÁI NIỆM CƠ BẢN
1.2.1. Câu lệnh và biến trong Matlab
Các câu lệnh trong Matlab thường có dạng sau:
biến = biểu thức
Tên biến được bắt đầu bằng một chữ cái, sau đó có thể là các chữ và số.
Matlab chấp nhận tên biến (cũng như tên hàm) có đến 19 kí tự và phân biệt chữ
in hoa và chữ in thường.
7

Không giống với một số phần mềm lập trình khác, ở đây biến không phải
khai báo trước. Nếu không viết tên biến và dấu = trước biểu thức thì chương

trình sẽ tự động tạo tên biến là and.
Ví dụ:
>>2/4
and =
0.5000
Nếu cuối câu lệnh ta đánh dấu kết thúc ‘ ; ‘ thì các phép tính được thực hiện
nhưng không xuất kết quả ra màn hình. Ngược lại nếu không gõ dấu kết thúc thì
kết quả tính được in ra màn hình.
Nếu câu lệnh quá dài không thể viết hết được trên một hang thì có thể dùng
dấu ba chấm (…) để viết tiếp trên dòng thứ hai.
Muốn viết lời chú dẫn, trước dòng đó ta gõ dấu %, khi chạy chương trình
máy sẽ bỏ qua dòng này.
1.2.2. Các phép toán
• Các phép toán số học: nối các toán hạng trong biểu thức với nhau. Dấu
các phép toán như sau:
+ cộng
– trừ
* nhân
/ chia phải
\ chia trái
^ lũy thừa
• Các phép toán quan hệ:
== bằng
<= nhỏ hơn hoặc bằng
>= lớn hơn hoặc bằng
~= không bằng
<
nhỏ hơn
>
lớn hơn

8

• Các phép toán logic
& và
/
hoặc
~
không
Các phép toán quan hệ và logic thường được dung trong các biểu thức của
các toán tử điều khiển như if, while.
1.2.3. Số dùng trong Matlab
Matlab dùng số thập phân truyền thống với số chữ số thập phân tùy chọn.
Bạn cũng có thể dùng số dưới dạng lũy thừa của 10 và số có số đơn vị phức.
Dưới đây là một số ví dụ về các số hợp thức dùng trong Matlab:
4

57

-180.1122

3.0983741

12.6529E4

20.2908e-2

-23.1261i

5e2i

12i

1.2.4. Nhập số liệu từ bàn phím
Dùng lệnh input với quy cách viết như sau:
a=input(‘ hãy nhập giá trị của a: a =’)
Khi chạy chương trình máy sẽ dừng để đợi ta gõ vào từ bàn phím giá trị của
a, sau đó bấm Enter.
1.2.5. In kết quả ra màn hình
Cách 1: Không gõ dấu kết thúc (;) ở cuối câu lệnh. Khi chạy kết quả tính
được tự động in ra trên màn hình.
Ví dụ:
>>x=12+6*sin(pi/7)

9

x=
14.6033
Cách 2: Dùng lệnh disp
>> x=12+6*sin(pi/7)
disp(x)
14.6033
1.2.6. Ma trận
Ma trận được biểu thị trong dấu ngoặc vuông, mỗi phần tử trên một hang
được cách nhau bằng các ô trống hoặc dấu phẩy (,), còn mỗi hang được ngăn
cách bởi dấu chấm phẩy (;).
Ví dụ: Viết ma trận A gồm 3 hàng, 3 cột.
>>A=[1 2 3;2 3 4;3 4 5]
A=

1
2
3

2 3
3 4
4 5

1.2.7 Số phức
Matlab có thể thực hiện được các phép toán về số phức. Số phức được biểu
thị nhờ hàm I và j. Ví dụ viết số phức z dùng i và j như dưới đây cho kết qur
như nhau:
z= 2+4*i
hoặc z= 2+4*j
Một ví dụ khác về số phức được viết dưới dạng e mũ:
10

z= r*exp(i*theta)
1.3. CÁC HÀM TOÁN HỌC
1.3.1 Các hàm lượng giác
sin : sin
cos : cosin
tan : tang
asin : arcsin
acos : arccosin
atan : arctang
atan2 : arctan góc phần tư
sinh : sin hybecbolic
cosh : cosin hybecbolic

tanh : tang hybecbolic
1.3.2 Các hàm toán sơ cấp
abs
: giá trị tuyệt đối hoặc modun của số phức
angle : góc pha
real
: phần thực của số phức
imag : phần ảo
sqrt
: căn bậc hai
conj
: số phức liên hợp
round : làm tròn đến số nguyên gần nhất
fix
: làm tròn hướng về zero
gcd
: ước số chung lớn nhất
lom
: bội số chung nhỏ nhất
exp
: hàm e mũ
log
: logarit cơ số tự nhiên
log10 : logarit cơ số 10

11

Chương 2
MẠCH ĐIỆN TUYẾN TÍNH Ở CHẾ ĐỘ XÁC LẬP

2.1. MẠCH ĐIỆN TUYẾN TÍNH Ở CHẾ ĐỘ XÁC LẬP
Mạch điện là tập hợp các thiết bị điện nối với nhau bằng các dây dẫn (phần
tử dẫn) tạo thành những vòng kín trong đó có dòng điện có thể chạy qua.
Mạch điện thường gồm các loại phần tử sau: nguồn điện, phụ tải, dây dẫn.
Cấu trúc mạch điện:
– Nút: là giao điểm của ít nhất 3 nhánh.
– Vòng: gồm nhiều nhánh tạo thành vòng kín, mỗi nút gặp không quá một
lần.
– Nhánh: gồm một hoặc một số phần tử mắc nối tiếp với nhau.
Mạch điện tuyến tính là mạch điện có mô hình toán học bao gồm hữu hạn
các tuyến trạng thái, các thông số R, L, C của các phần tử mạch là các hằng số
và không phụ thuộc điện áp hai đầu hay dòng điện đi qua nó.
Các phần tử tuyến tính:
Điện trở
( R)

Cuộn cảm
( L)

Tụ điện
( C)

Chế độ xác lập: chế độ xác lập là quá trình trong đó dưới tác động của
nguồn, dòng điện và điện áp trên các nhánh đạt trạng thái ổn định. Ở chế độ xác
lập dòng điện và điện áp trên các nhánh biến thiên theo một quy luật giống với
quy luật biến thiên của nguồn.
Ví dụ : Mạch điện

12

2.2. MỘT SỐ PHƯƠNG PHÁP GIẢI MẠCH ĐIỆN TUYẾN TÍNH Ở CHẾ ĐỘ
XÁC LẬP
2.2.1 Các định luật Kỉchhoff
– Định luật Kirchhoff I: tổng các dòng điện đi vào một nút nào đó bằng
tổng các dòng điện từ nút đó đi ra.
=0
= 1 khi đi vào nút
= -1 khi đi ra nút
= 0 khi nhánh k không nối tới nút.
Ví dụ : Tại nút A :

– – – =0

A

– Định luật Kirchhoff II: tổng đại số các điện áp sụt trên các thông số thụ
động của một vòng kín bằng tổng đại số các sức điện động có trong vòng
kín đó.

=
13

Ví dụ: Cho mạch điện:

Với mạch kín trên, ta có:

+ + = –

2.2.2 Phương pháp dòng nhánh
Là phương pháp lập phương trình mạch điện theo định luật Kirchhoff I và
Kirchhoff II với biến là dòng trong các nhánh.
Ta xác định số nút n và số nhánh m của mạch điện.
• Mạch điện có n nút thì viết (n – 1) phương trình theo định luật
Kirchhoff I.
• Mạch điện có m nhánh thì viết (m – n + 1) phương trình theo định luật
Kirchhoff I

Xét mạch điện:

I
14

II

– Chọn chiều dòng điện như hình vẽ.
– Lập phương trình mạch theo định luật Kirchhoff I:
+ – =0
– Lập phương trình mạch theo định luật Kirchhoff II:
Theo vòng 1: + =
Theo vòng 2: – – =
– Ta lập được hệ phương trình:
+ – =0
+ =
– – =
Với:
= + jw – j
= + jw – j

= + jw – j
– Ta tiến hành giải các phương trình để tìm giá trị yêu cầu.
2.2.3. Phương pháp điện áp hai nút
Là phương pháp riêng của phương pháp điện thế điểm nút.
– Sử dụng khi mạch có nhiều nhánh nhưng chỉ có hai nút.
Xét mạch điện:
A

A

I
15

II

B

B

– Chọn chiều dòng điện như hình vẽ:
– Theo phương pháp này ta lập công thức tính :
=
Trong đó có quy ước các sức điện động có chiều ngược với điện áp thì lấy
dấu dương và cùng chiều lấy dấu âm.
Với:

=
= + jw – j
= + jw – j

= + jw – j

– Ta tiến hành giải các phương trình để tìm giá trị yêu cầu.
2.2.4 Phương pháp dòng điện vòng
Là phương pháp lập phương trình mạch theo định luật Kirchhoff II với biến
là dòng điện quy ước chạy trong các vòng của mạch.
Nếu mạch điện có n nút và m nhánh khi áp dụng phương pháp dòng điện
vòng ta sẽ viết được: ( m – n +1) phương trình.
A

A

I
B

II
B

16

Chọn chiều dòng điện như hình vẽ:
Đặt:

=
=
= +
Ta lập được hệ phương trình:
( +) – =
( +) – =Lưu ý: Phần tử chung : nếu và

so với ngược chiều thì lấy dấu (-) và

ngược lại.
Với : = + jw – j
= + jw – j
= + jw – j
– Ta tiến hành giải các phương trình để tìm giá trị yêu cầu.
2.2.5 Phương pháp xếp chồng
Trong mạch điện tuyến tính có nhiều nguồn tác động:
– Dòng điện qua mỗi nhánh bằng tổng đại số các dòng điện qua nhánh do
tác động của từng sức điện động gây nên.
– Điện áp trên mỗi nhánh bằng tổng đại số các điện áp gây nên trên nhánh
do tác động của từng sức điện động gây nên.

17

Xét mạch điện:

&
E
3
I

II

Ta lần lượt cho từng nguồn tác động để tìm từng thành phần của dòng cần tìm.
 Trường hợp 1: khi chỉ có nguồn .
Ta có:

nt ( // )

=> = +

.=
=
=
 Trường hợp 2: khi chỉ có nguồn
Ta có:

nt ( // )

=> = +

.=18

=
=
Giá trị dòng điện cần tìm là:
= +
= +
= +

Chương 3:
XÂY DỰNG THUẬT TOÁN PHÂN TÍCH MẠCH
3.1. BÀI TOÁN
19



Các dữ liệu cho trước:
Sơ đồ mạch.
Các thông số của các phần tử ( điện trở, điện dung, điện cảm,…).
Các thông số của nguồn áp, nguồn dòng.
Các thông số cần tính:
Dòng điện chạy qua các nhánh.
Điện áp trên các phần tử.
Công suất…

3.2. XÂY DỰNG THUẬT TOÁN PHÂN TÍCH MẠCH
3.2.1. Phân tích mạch
Để xây dựng thuật toán giải bài toán mạch này, ta chuyển phương trình mạch
sang số phức, khi đó hệ phương trình vi phân mô tả mạch sẽ trở thành hệ
phương trình đại số và dễ dàng giải được.
Xét mạch điện tổng quát gồm m nhánh, n nút

Ta sẽ lập được hệ gồm m phương trình vi phân như sau:
 ∑ i k (t) = 0

 Nót

di


1

i k dt ÷ = ∑ e k
 ∑  R k .i k + L k k +

dt C k

 Vßng
 Vßng 
Chuyển hệ phương trình sang số phức ta có:
20

∑ &
Ik = 0
 nót
 
1 &
 ∑  Rk &
I k + jωL k &
Ik +
I k ÷ = ∑ E&k
jωC k  vßng
 vßng 
∑ &
Ik = 0

 nót



1  &

&
 ∑  R k + j  ωL k −
÷I k = ∑ E
k
ωC k  
vßng
 vßng 

∑ &
Ik = 0
 nót

&
&
 ∑ Zk Ik = ∑ Ek
vßng
 vßng

(3.1)

Trong đó:

=


1 
R k + j ωL k −
÷

ωC k 

là tổng trở phức của nhánh k.

Xét mạch điện tổng quát m nhánh, n nút trên:
Từ công thức tổng quát (3.1)

∑ &
Ik = 0
 nót

&
&
 ∑ Zk Ik = ∑ Ek
vßng
 vßng

Trong đó:, , là tổng trở phức các nhánh. Từ hệ phương trình ta lập được các
ma trận:
A=

21

Sai

Đúng
Tính XL

B=

;

α

C=

Ma trận dòng điện các nhánh là:

I = C*B

I là ma trận cột, mỗi dòng của ma trận là dòng điện của nhánh tương ứng.
Từ dòng điện ta tìm được các thông số khác của mạch.
Tính ma trận A,B

Hệ phương trình (3.1) là hệ phương trình đại số tuyến tính, ta dễ dàng giải

được trên Matlab. Lưu đồ thuật toán để giải bài toán lý thuyết mạch ở chế độ
xác lập được biểu diễn như sau:
Tính dòng điện các nhánh

22

3.2.2. Viết chương trình trên Matlab
Chương trình được viết như sau:
Nhánh số 1
>> R1=(‘gia tri dien tro R1’);
>> L1=(‘gia tri dien cam L1’);

>> C1=(‘gia tri dien dung C1’);
>> E1=(‘gia tri nguon E1’);
>> anpha1=(‘gia tri goc pha cua E1’);

23

>> anpha1=anpha1*pi/180;

%doi gia trị goc pha tu do sang radian

>> disp(‘Nhanh so 2’)
Nhánh số 2
>> R2=(‘gia tri dien tro R2’);
>> L2=(‘gia tri dien cam L2’);
>> C2=(‘gia tri dien dung C2’);
>> E2=(‘gia tri nguon E2’);
>> anpha2=(‘gia tri goc pha cua E2’);
>> anpha2=anpha2*pi/180;

%doi gia tri goc pha tu do sang radian

>> disp(‘Nhanh so m’)
Nhánh số m
>> Rm=(‘gia tri dien tro Rm’);
>> Lm=(‘gia tri dien cam Lm’);
>> Cm=(‘gia tri dien dung Cm’);
>> Em=(‘gia tri nguon Em’);
>> anpham=(‘gia tri goc pha cua Em’);
>> anpham=anpham*pi/180;

>> w=(‘gia tri tan so goc w’);
Tính toán các thông số:
>> XL1=w*L1;

24

>> XL2=w*L2;
>> XLm=w*Lm;
>> if(C1~=0)
XC1=1/(w*C1)
else
XC1=0
end
>> if(C2~=0)
XC2=1/(w*C2)
else
XC2=0
end
>> if(Cm~=0)
XCm=1/(w*Cm)
else
XCm=0
end
>> Z1=R1+(XL1 – XC1)*i;
>> Z2=R2+(XL1 – XC1)*i;
>> Zm=Rm+(XLm – XCm)*i;

25

Song với số lượng bài tập lớn, khối lượng thống kê giám sát nhiều, phải thường xuyênlàm việc với những mạch điện phức tạp ở những chính sách khác nhau. Vì vậy việctính toán để giải một bài tập triết lý mạch thường mất khá nhiều thời hạn, trong quy trình đo lường và thống kê hoàn toàn có thể mắc nhiều sai lầm đáng tiếc dẫn đến tác dụng thu đượckhông đúng mực. Qua quy trình khám phá về ứng dụng mô phỏng Matlab và Simulink, vớinhững ứng dụng thiết thực, to lớn của nó ở rất nhiều nghành khoa học – kỹthuật nói chung và đặc biệt quan trọng so với kỹ sư tinh chỉnh và điều khiển – tự động hóa, đơn cử hơn làviệc tương hỗ giải bài toán mạch điện. Với mục tiêu tìm ra chiêu thức giải bàitập về mạch tuyến tính nhanh gọn và đúng chuẩn, đề tài “ Ứng dụng Matlabtrong giải mạch điện tuyến tính ở chính sách xác lập ” được hình thành. Lời cảm ơnĐể triển khai xong được đồ án với đề tài “ Ứng dụng Matlab trong giải mạchđiện tuyến tính ở chính sách xác lập ”, với sự nỗ lực của bản thân, em đã vận dụngnhững kỹ năng và kiến thức được học, được trang bị từ thầy cô giảng dạy tại giảng đường, sự tìm tòi học hỏi, cùng sự tích lũy thông tin tương quan tới đề tài. Bên cạnh đóem luôn nhận dược sự hướng dẫn, trợ giúp tận tình của những thầy cô và sự góp ýcủa những bạn trong nhóm đồ án. Em xin gửi lời cảm ơn chân thành tới thầy. Người đã hướng dẫn em làm đồán này, thầy đã trợ giúp, tạo mọi điều kiện kèm theo thuận tiện để em triển khai xong được đồán. Lần tiên phong thực thi làm một đồ án, với thời hạn và năng lực kiến thứccòn hạn chế, đồ án không hề tránh khỏi những thiếu sót. Em xin nhận đượcnhững nhận xét, góp ý từ thầy cô và những bạn. Em xin chân thành cảm ơn ! Chương 1 : TỔNG QUAN VỀ MATLAB1. 1.1. BẮT ĐẦU VỚI MATLAB1. 1.2. Giới thiệu chungMATLAB là một bộ ứng dụng dùng để giám sát những bài toán kỹ thuật, được viết bằng ngôn từ C do hãng Math Works Inc sản xuất. Nó được tạo trêncở sở những ứng dụng do những nhà lập trình của những dự án Bất Động Sản LINPACK vàEISPACK viết ra bằng ngôn từ Fortran dùng cho việc thực thi những phép tínhvà thao tác trên ma trận. Tên của ứng dụng MATLAB là chữ viết tắt của ‘ Matrix Laboratory ’ cónghĩa là ‘ giải pháp ma trận ’. Đến khi thực hành thực tế sử dụng ứng dụng ta sẽthấy mỗi thành phần cơ bản của Matlab là một ma trận. Phần mềm Matlab liên tụcđược bổ trợ và triển khai xong. Các ứng dụng nổi bật của Matlab : Toán học và đo lường và thống kê. Phát triển thuật toán. Tạo quy mô, mô phỏng và giao thức. Khảo sát, phân tích số liệu. Đồ họa khoa học kỹ thuật. Phát triển ứng dụng, gồm cả giao diện người dùng đồ họa GUI.Thiết kế những mạng lưới hệ thống điều khiển và tinh chỉnh trong thời hạn thực. Matlab cung ứng cho ta những chiêu thức theo hướng chuyên sử dụng hóa đượcgọi là những Toolbox ( hộp công cụ ). Các Toolbox được cho phép người sử dụng học vàáp dụng những kỹ thuật chuyên được dùng cho một nghành nghề dịch vụ nào đó. Toolbox là một tậphợp tổng lực những hàm của matlab ( M-file ) được cho phép lan rộng ra môi trườngMatlab để giải những lớp bài toán đơn cử. Các nghành trong đó có sẵn những Toolboxbao gồm : giải quyết và xử lý tín hiệu, mạng lưới hệ thống điều khiển và tinh chỉnh, mạng noron, mô phỏng … Hệ thống Matlab gồm có 5 phần chính : – Ngôn ngữ Matlab : là một ngôn từ ma trận, mảng cấp cao với những câulệnh, hàm, cấu trúc tài liệu vào / ra, những tính năng lập trình đối tượng người tiêu dùng. Nócho phép lập trình những ứng dụng từ nhỏ đến những ứng dụng lớn, từ ứngdụng đơn thuần đến phức tạp. – Môi trường thao tác của Matlab : đây là một bộ những công cụ và phươngtiện mà bạn sử dụng với tư cách người dùng hoặc người lập trình Matlab. Nó gồm có những phương tiện đi lại cho việc quản trị những biến trong không gianlàm việc Workspace cũng như xuất nhập tài liệu. Nó cũng gồm có cáccông cụ để tăng trưởng quản trị, tháo gỡ và định hình M – file. – Xử lý đồ họa : đây là một mạng lưới hệ thống đồ họa của Matlab. Nó gồm có cáclệnh hạng sang cho trực quan hóa dữ liệu hai chiều và ba chiều, giải quyết và xử lý ảnh, ảnh động, … Nó cũng cung ứng những lệnh cấp thấp được cho phép bạn tùy biếngiao diện đồ họa cũng như đi thiết kế xây dựng một giao diện đồ họa hoàn chỉnhcho ứng dụng Matlab của mình. – Thư viện toán học Matlab : đây là một thuật toán khổng lồ những thuật toántính toán từ những hàm cơ bản cộng, trừ, nhân, chia, sin, cos, số học phức … tới những hàm phức tạp hơn như : nghịch đảo, ma trận, tìm giá trị riêng củama trận, phép biến hóa fourier nhanh. – Giao diện chương trình ứng dụng Matlab API ( Application ProgramInterface ) : đây là một thư viện được cho phép ta viết những chương trình C vàFortran thích hợp với Matlab. Simulink là một chương trình đi kèm với Matlab, là một mạng lưới hệ thống tương tácvới việc mô phỏng những mạng lưới hệ thống động học phi tuyến. Nó là một chương trình đồhọa sử dụng chuột để thao tác được cho phép quy mô hóa một mạng lưới hệ thống bằng cáchvẽ một sơ đồ khối trên màn hình hiển thị. Nó hoàn toàn có thể thao tác với những mạng lưới hệ thống tuyếntính, phi tuyến, mạng lưới hệ thống liên tục theo thời hạn, mạng lưới hệ thống gián đoạn theo thờigian, mạng lưới hệ thống đa biến … 1.1.3. Giao diệnCommand Window : Đây là hành lang cửa số thao tác chính của MATLAB. Tại đây tathực hiện tòan bộ việc nhập tài liệu và xuất tác dụng tính tóan. Dấu nháy >> báohiệu chương trình sẵn sàng chuẩn bị cho việc nhập tài liệu. Ta kết thúc việc nhập dữ liệubằng cách nhấn phím Enter. MATLAB sẽ thực thi dòng lệnh mà ta nhập vàoCommand Window và trả hiệu quả trong Command Window. Command History : Lưu lại tổng thể những lệnh mà ta đã nhập vào trongCommand Window. Ta hoàn toàn có thể xem lại toàn bộ những lậnh bằng cách dùng scroll bar, hay triển khai lại lệnh đó bằng cách nhấp kép lên dòng lệnh. Ngòai ra ta còn cóthể cut, paste, delete những lệnh. Workspace browser : trong MATLAB những tài liệu được lưu trong biến. Workspace browser liệt kê tổng thể những biến mà ta đang sử dụng trong MATLAB.Nó phân phối thông tin về size, loại tài liệu. Ta hoàn toàn có thể truy vấn trực tiếpvào tài liệu bằng cách nhấn kép vào biến để hiển thị Array editor. Launch pad : được cho phép người dùng truy vấn nhanh vào những bộ Toolbox, phầnHelp. 1.1.4. Một số thao tác cơ bản trong MatlabTrong MATLAB, thanh trình đơn đổi khác tùy theo hành lang cửa số mà ta lựa chọn. Tuy vậy những trình đơn File, Desktop, Window, Help xuất hiện hầu hết trong cácthanh trình đơn. Trình đơn File : • New : tạo một đối tượng người tiêu dùng mới ( biến, m-file, figure, Model, GUI ). • Open : mở một file theo định dạng của MATLAB ( *. m, *. mat, *. mdl ) • Import data … : nhập tài liệu từ những file khác vào MATLAB. • Save workspace … : lưu những biến trong MATLAB vào file *. mat. • Set path : khai báo những đường dẫn của những thư mục chứa những m-file. • Preferences : đổi khác những định dạng về font, font size, color cũng như cáctùy chọn cho Editor, Command Window v.v. • Page Setup : định dạng trang in. • Print : in. Trình đơn Desktop : • Desktop layout : sắp xếp những hành lang cửa số trong giao diện. • Save layout : lưu cách sắp xếp hành lang cửa số. Trình đơn Window dùng để kích họat ( activate ) hành lang cửa số. Nút Start phân phối shortcut tới những công cụ trong MATLAB1. 2. CÁC KHÁI NIỆM CƠ BẢN1. 2.1. Câu lệnh và biến trong MatlabCác câu lệnh trong Matlab thường có dạng sau : biến = biểu thứcTên biến được khởi đầu bằng một vần âm, sau đó hoàn toàn có thể là những chữ và số. Matlab đồng ý tên biến ( cũng như tên hàm ) có đến 19 kí tự và phân biệt chữin hoa và chữ in thường. Không giống với 1 số ít ứng dụng lập trình khác, ở đây biến không phảikhai báo trước. Nếu không viết tên biến và dấu = trước biểu thức thì chươngtrình sẽ tự động hóa tạo tên biến là and. Ví dụ : >> 2/4 and = 0.5000 Nếu cuối câu lệnh ta lưu lại kết thúc ‘ ; ‘ thì những phép tính được thực hiệnnhưng không xuất tác dụng ra màn hình hiển thị. trái lại nếu không gõ dấu kết thúc thìkết quả tính được in ra màn hình hiển thị. Nếu câu lệnh quá dài không hề viết hết được trên một hang thì hoàn toàn có thể dùngdấu ba chấm ( … ) để viết tiếp trên dòng thứ hai. Muốn viết lời chú dẫn, trước dòng đó ta gõ dấu %, khi chạy chương trìnhmáy sẽ bỏ lỡ dòng này. 1.2.2. Các phép toán • Các phép toán số học : nối những toán hạng trong biểu thức với nhau. Dấucác phép toán như sau : + cộng – trừ * nhân / chia phải \ chia trái ^ lũy thừa • Các phép toán quan hệ : = = bằng < = nhỏ hơn hoặc bằng > = lớn hơn hoặc bằng ~ = không bằngnhỏ hơnlớn hơn • Các phép toán logic và vàhoặckhôngCác phép toán quan hệ và logic thường được dung trong những biểu thức củacác toán tử điều khiển và tinh chỉnh như if, while. 1.2.3. Số dùng trong MatlabMatlab dùng số thập phân truyền thống cuội nguồn với số chữ số thập phân tùy chọn. Bạn cũng hoàn toàn có thể dùng số dưới dạng lũy thừa của 10 và số có số đơn vị chức năng phức. Dưới đây là 1 số ít ví dụ về những số hợp thức dùng trong Matlab : 57-180. 11223.098374112.6529 E420. 2908 e – 2-23. 1261 i5e2i12i1. 2.4. Nhập số liệu từ bàn phímDùng lệnh input với quy cách viết như sau : a = input ( ‘ hãy nhập giá trị của a : a = ’ ) Khi chạy chương trình máy sẽ dừng để đợi ta gõ vào từ bàn phím giá trị củaa, sau đó bấm Enter. 1.2.5. In tác dụng ra màn hìnhCách 1 : Không gõ dấu kết thúc ( ; ) ở cuối câu lệnh. Khi chạy hiệu quả tínhđược tự động hóa in ra trên màn hình hiển thị. Ví dụ : >> x = 12 + 6 * sin ( pi / 7 ) x = 14.6033 Cách 2 : Dùng lệnh disp >> x = 12 + 6 * sin ( pi / 7 ) disp ( x ) 14.60331.2.6. Ma trậnMa trận được biểu lộ trong dấu ngoặc vuông, mỗi thành phần trên một hangđược cách nhau bằng những ô trống hoặc dấu phẩy (, ), còn mỗi hang được ngăncách bởi dấu chấm phẩy ( ; ). Ví dụ : Viết ma trận A gồm 3 hàng, 3 cột. >> A = [ 1 2 3 ; 2 3 4 ; 3 4 5 ] A = 2 33 44 51.2.7 Số phứcMatlab hoàn toàn có thể triển khai được những phép toán về số phức. Số phức được biểuthị nhờ hàm I và j. Ví dụ viết số phức z dùng i và j như dưới đây cho kết qurnhư nhau : z = 2 + 4 * ihoặc z = 2 + 4 * jMột ví dụ khác về số phức được viết dưới dạng e mũ : 10 z = r * exp ( i * theta ) 1.3. CÁC HÀM TOÁN HỌC1. 3.1 Các hàm lượng giácsin : sincos : cosintan : tangasin : arcsinacos : arccosinatan : arctangatan2 : arctan góc phần tưsinh : sin hybecboliccosh : cosin hybecbolictanh : tang hybecbolic1. 3.2 Các hàm toán sơ cấpabs : giá trị tuyệt đối hoặc modun của số phứcangle : góc phareal : phần thực của số phứcimag : phần ảosqrt : căn bậc haiconj : số phức liên hợpround : làm tròn đến số nguyên gần nhấtfix : làm tròn hướng về zerogcd : ước số chung lớn nhấtlom : bội số chung nhỏ nhấtexp : hàm e mũlog : logarit cơ số tự nhiênlog10 : logarit cơ số 1011C hương 2M ẠCH ĐIỆN TUYẾN TÍNH Ở CHẾ ĐỘ XÁC LẬP2. 1. MẠCH ĐIỆN TUYẾN TÍNH Ở CHẾ ĐỘ XÁC LẬPMạch điện là tập hợp những thiết bị điện nối với nhau bằng những dây dẫn ( phầntử dẫn ) tạo thành những vòng kín trong đó có dòng điện hoàn toàn có thể chạy qua. Mạch điện thường gồm những loại thành phần sau : nguồn điện, phụ tải, dây dẫn. Cấu trúc mạch điện : – Nút : là giao điểm của tối thiểu 3 nhánh. – Vòng : gồm nhiều nhánh tạo thành vòng kín, mỗi nút gặp không quá mộtlần. – Nhánh : gồm một hoặc một số ít thành phần mắc tiếp nối đuôi nhau với nhau. Mạch điện tuyến tính là mạch điện có quy mô toán học gồm có hữu hạncác tuyến trạng thái, những thông số kỹ thuật R, L, C của những phần tử mạch là những hằng sốvà không nhờ vào điện áp hai đầu hay dòng điện đi qua nó. Các thành phần tuyến tính : Điện trở ( R ) Cuộn cảm ( L ) Tụ điện ( C ) Chế độ xác lập : chính sách xác lập là quy trình trong đó dưới tác động ảnh hưởng củanguồn, dòng điện và điện áp trên những nhánh đạt trạng thái không thay đổi. Ở chính sách xáclập dòng điện và điện áp trên những nhánh biến thiên theo một quy luật giống vớiquy luật biến thiên của nguồn. Ví dụ : Mạch điện122. 2. MỘT SỐ PHƯƠNG PHÁP GIẢI MẠCH ĐIỆN TUYẾN TÍNH Ở CHẾ ĐỘXÁC LẬP2. 2.1 Các định luật Kỉchhoff – Định luật Kirchhoff I : tổng những dòng điện đi vào một nút nào đó bằngtổng những dòng điện từ nút đó đi ra. = 0 = 1 khi đi vào nút = – 1 khi đi ra nút = 0 khi nhánh k không nối tới nút. Ví dụ : Tại nút A : – – – = 0 – Định luật Kirchhoff II : tổng đại số những điện áp sụt trên những thông số kỹ thuật thụđộng của một vòng kín bằng tổng đại số những sức điện động có trong vòngkín đó. 13V í dụ : Cho mạch điện : Với mạch kín trên, ta có : + + = – 2.2.2 Phương pháp dòng nhánhLà giải pháp lập phương trình mạch điện theo định luật Kirchhoff I vàKirchhoff II với biến là dòng trong những nhánh. Ta xác lập số nút n và số nhánh m của mạch điện. • Mạch điện có n nút thì viết ( n – 1 ) phương trình theo định luậtKirchhoff I. • Mạch điện có m nhánh thì viết ( m – n + 1 ) phương trình theo định luậtKirchhoff IXét mạch điện : 14II – Chọn chiều dòng điện như hình vẽ. – Lập phương trình mạch theo định luật Kirchhoff I : + – = 0 – Lập phương trình mạch theo định luật Kirchhoff II : Theo vòng 1 : + = Theo vòng 2 : – – = – Ta lập được hệ phương trình : + – = 0 + = – – = Với : = + jw – j = + jw – j = + jw – j – Ta triển khai giải những phương trình để tìm giá trị nhu yếu. 2.2.3. Phương pháp điện áp hai nútLà chiêu thức riêng của giải pháp điện thế điểm nút. – Sử dụng khi mạch có nhiều nhánh nhưng chỉ có hai nút. Xét mạch điện : 15II – Chọn chiều dòng điện như hình vẽ : – Theo giải pháp này ta lập công thức tính : Trong đó có quy ước những sức điện động có chiều ngược với điện áp thì lấydấu dương và cùng chiều lấy dấu âm. Với : = + jw – j = + jw – j = + jw – j – Ta triển khai giải những phương trình để tìm giá trị nhu yếu. 2.2.4 Phương pháp dòng điện vòngLà giải pháp lập phương trình mạch theo định luật Kirchhoff II với biếnlà dòng điện quy ước chạy trong những vòng của mạch. Nếu mạch điện có n nút và m nhánh khi vận dụng giải pháp dòng điệnvòng ta sẽ viết được : ( m – n + 1 ) phương trình. II16Chọn chiều dòng điện như hình vẽ : Đặt : = + Ta lập được hệ phương trình : ( + ) – = ( + ) – = Lưu ý : Phần tử chung : nếu vàso với ngược chiều thì lấy dấu ( – ) vàngược lại. Với : = + jw – j = + jw – j = + jw – j – Ta triển khai giải những phương trình để tìm giá trị nhu yếu. 2.2.5 Phương pháp xếp chồngTrong mạch điện tuyến tính có nhiều nguồn tác động ảnh hưởng : – Dòng điện qua mỗi nhánh bằng tổng đại số những dòng điện qua nhánh dotác động của từng sức điện động gây nên. – Điện áp trên mỗi nhánh bằng tổng đại số những điện áp gây nên trên nhánhdo ảnh hưởng tác động của từng sức điện động gây nên. 17X ét mạch điện : IITa lần lượt cho từng nguồn ảnh hưởng tác động để tìm từng thành phần của dòng cần tìm.  Trường hợp 1 : khi chỉ có nguồn. Ta có : nt ( / / ) => = +. =  Trường hợp 2 : khi chỉ có nguồnTa có : nt ( / / ) => = +. = 18G iá trị dòng điện cần tìm là : = + = + = + Chương 3 : XÂY DỰNG THUẬT TOÁN PHÂN TÍCH MẠCH3. 1. BÀI TOÁN19Các dữ liệu cho trước : Sơ đồ mạch. Các thông số kỹ thuật của những thành phần ( điện trở, điện dung, điện cảm, … ). Các thông số kỹ thuật của nguồn áp, nguồn dòng. Các thông số kỹ thuật cần tính : Dòng điện chạy qua những nhánh. Điện áp trên những thành phần. Công suất … 3.2. XÂY DỰNG THUẬT TOÁN PHÂN TÍCH MẠCH3. 2.1. Phân tích mạchĐể kiến thiết xây dựng thuật toán giải bài toán mạch này, ta chuyển phương trình mạchsang số phức, khi đó hệ phương trình vi phân miêu tả mạch sẽ trở thành hệphương trình đại số và thuận tiện giải được. Xét mạch điện tổng quát gồm m nhánh, n nútTa sẽ lập được hệ gồm m phương trình vi phân như sau :  ∑ i k ( t ) = 0  Nótdii k dt ÷ = ∑ e k  ∑  R k. i k + L k k + dt C k  Vßng  Vßng  Chuyển hệ phương trình sang số phức ta có : 20  ∑ và Ik = 0   nót   1 và   ∑  Rk và I k + jωL k và Ik + I k ÷ = ∑ E và kjωC k  vßng   vßng   ∑ và Ik = 0  nót1   và  ∑  R k + j  ωL k − ÷  I k = ∑ EωC k   vßng  vßng   ∑ và Ik = 0  nót  ∑ Zk Ik = ∑ Ekvßng  vßng ( 3.1 ) Trong đó : 1  R k + j  ωL k − ωC k  là tổng trở phức của nhánh k. Xét mạch điện tổng quát m nhánh, n nút trên : Từ công thức tổng quát ( 3.1 )  ∑ và Ik = 0  nót  ∑ Zk Ik = ∑ Ekvßng  vßngTrong đó :, , là tổng trở phức những nhánh. Từ hệ phương trình ta lập được cácma trận : A = 21S aiĐúngTính XLB = C = Ma trận dòng điện những nhánh là : I = C * BI là ma trận cột, mỗi dòng của ma trận là dòng điện của nhánh tương ứng. Từ dòng điện ta tìm được những thông số kỹ thuật khác của mạch. Tính ma trận A, BHệ phương trình ( 3.1 ) là hệ phương trình đại số tuyến tính, ta thuận tiện giảiđược trên Matlab. Lưu đồ thuật toán để giải bài toán kim chỉ nan mạch ở chế độxác lập được trình diễn như sau : Tính dòng điện những nhánh223. 2.2. Viết chương trình trên MatlabChương trình được viết như sau : Nhánh số 1 >> R1 = ( ‘ gia tri dien tro R1 ‘ ) ; >> L1 = ( ‘ gia tri dien cam L1 ‘ ) ; >> C1 = ( ‘ gia tri dien dung C1 ‘ ) ; >> E1 = ( ‘ gia tri nguon E1 ‘ ) ; >> anpha1 = ( ‘ gia tri goc pha cua E1 ‘ ) ; 23 >> anpha1 = anpha1 * pi / 180 ; % doi gia trị goc pha tu do sang radian >> disp ( ‘ Nhanh so 2 ‘ ) Nhánh số 2 >> R2 = ( ‘ gia tri dien tro R2 ‘ ) ; >> L2 = ( ‘ gia tri dien cam L2 ‘ ) ; >> C2 = ( ‘ gia tri dien dung C2 ‘ ) ; >> E2 = ( ‘ gia tri nguon E2 ‘ ) ; >> anpha2 = ( ‘ gia tri goc pha cua E2 ‘ ) ; >> anpha2 = anpha2 * pi / 180 ; % doi gia tri goc pha tu do sang radian >> disp ( ‘ Nhanh so m ‘ ) Nhánh số m >> Rm = ( ‘ gia tri dien tro Rm ‘ ) ; >> Lm = ( ‘ gia tri dien cam Lm ‘ ) ; >> Cm = ( ‘ gia tri dien dung Cm ‘ ) ; >> Em = ( ‘ gia tri nguon Em ‘ ) ; >> anpham = ( ‘ gia tri goc pha cua Em ‘ ) ; >> anpham = anpham * pi / 180 ; >> w = ( ‘ gia tri tan so goc w ‘ ) ; Tính toán những thông số kỹ thuật : >> XL1 = w * L1 ; 24 >> XL2 = w * L2 ; >> XLm = w * Lm ; >> if ( C1 ~ = 0 ) XC1 = 1 / ( w * C1 ) elseXC1 = 0 end >> if ( C2 ~ = 0 ) XC2 = 1 / ( w * C2 ) elseXC2 = 0 end >> if ( Cm ~ = 0 ) XCm = 1 / ( w * Cm ) elseXCm = 0 end >> Z1 = R1 + ( XL1 – XC1 ) * i ; >> Z2 = R2 + ( XL1 – XC1 ) * i ; >> Zm = Rm + ( XLm – XCm ) * i ; 25

5/5 - (1 vote)
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments