Ứng dụng của toán học và một số mô hình toán học trong kinh tế
Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (225 KB, 17 trang )
Website: http://www.docs.vn Email : lienhe@docs.vn Tel : 0918.775.368
LỜI MỞ ĐẦU
* *
*
Phát triển kinh tế là mục tiêu của tất cả các nước trên thế giới. để đạt được
mục tiêu đó thì đòi hỏi các nước phải có sự kết hợp hài hòa việc phát triển
của tất cả các ngành khác nhau. trong quá trình phát triển kinh tế đó thì
toán học là một yếu tố có ứng dụng rất quan trọng. việc ứng dụng tốt các
mô hình kinh tế vào trong nền kinh tế đòi hỏi các nước phải có một cơ sở
toán học vững chắc. bằng chứng là các mô hình kinh tế từ trước đến nay
như mô hình IS_LM ,mô hình tăng trưởng SOLOW … tất cả đều in đậm
dấu ấn của toán học trong đó.
Ngày nay vai trò của toán học được thể hiện qua nhiều khía cạnh khác
nhau từ giảng dạy nghiên cứu đến chính sách kinh tế. nhiều người cho
rằng toán học là phần tương ứng lý thuyết của kinh tế lượng một ngành có
mục đích phân giải các hiện tượng kinh tế bằng các phương pháp thống kê.
Trên bình diện chính sách kinh tế thì các mô hình kinh tế toán và kinh tế
lượng được các viện nghiên cứu và các cơ quan chính phủ sử dụng rộng rãi
và thường xuyên trong việc đánh giá và dự báo ảnh hưởng của các chu
trình, xu hướng kinh tế hay các chính sách kinh tế công
Do đó có thể nói rằng ngày nay toán học có một vai trò rất quan trọng
trong tất cả các lĩnh vực đặc biệt là trong lĩnh vực kinh tế. dựa vào toán
học chúng ta có thể tiến hành phân tích và dự báo sự biến động trong nhiều
lĩnh vực khác nhau như về giá cả và tài chính. ..
Sau đây chúng ta xẽ đi xem xét tầm quan trọng của toán học trong kinh tế
và sự ứng dụng của nó ở trong một số các mô hình tăng trưởng và phát
triển kinh tế.
3
Website: http://www.docs.vn Email : lienhe@docs.vn Tel : 0918.775.368
NỘI DUNG
* *
*
I _ Ứng dụng của toán học và một số mô hình
toán học trong kinh tế.
1 _ Lịch sử của toán trong kinh tế học
Sự ứng dụng của toán trong kinh tế không phải là một hiện tượng mới.
Thật ra toán đã đóng vai trò đáng kể trong kinh tế học trên dưới một thế kỷ
nay mặc dù các thuyết kinh tế cổ điển đã được phát triển và hệ thống hoá
mà không cần dùng toán. Lấy thí dụ, hai kinh tế gia cổ điển lớn nhất là
Adam smith và David Ricardo, chỉ dùng thí dụ bằng số để minh hoạ các
lý thuyết của mình. Họ phối hợp các quan sát thực tế một cách phi toán
với các lý luận suy diễn về liên hệ nhân quả để giải thích hệ thống kinh tế
làm việc như thế nào. Ngay trong công trình của các kinh tế gia cổ điển vĩ
đại cuối cùng như John stuart Mill và Karl Marx, công thức toán hay đồ thị
cũng chỉ là một loại tốc ký hay phương cách trình bày mà thôi. Một ngoại
lệ đáng kể là thuyết dân số của Thomas Malthus (1798) trong đó Malthus
lập luận rằng dân số tăng theo cấp số nhân trong khi thực phẩm chỉ tăng
theo cấp số cộng.
Ngày nay, phần lớn các nhà kinh tế đồng ý rằng Augustin Cournot, triết gia
và toán gia Pháp, xứng đáng nhận danh hiệu “cha đẻ của kinh tế toán
học”. Cournot (1838) được coi là khai sinh ra kinh tế toán học vì ông đã
hệ thống hoá sự ứng dụng ký hiệu, công thức và lý luận toán trong kinh tế.
Sau thời Cournot, hầu hết các kinh tế gia danh tiếng đều phải sử dụng toán,
không ít thì nhiều, trong việc phát triển và truyền đạt các lý thuyết của
mình. Cournot được xem là một trong những kinh tế gia đầu tiên đã thành
công trong việc thành lập một lý thuyết giá trị nhất quán qua các phân tích
về tiêu thụ. Một vài đóng góp cụ thể của ông cho kinh tế gồm có: ý niệm
hàm và xác xuất trong phân tích kinh tế, hàm cầu, hàm cung, thuyết độc
quyền và lưỡng độc quyền. Cũng nên nhắc là thuyết lưỡng độc quyền của
Cournot đánh dấu bước đầu nghiêm túc của thuyết trò chơi và giải pháp
của Cournot là một hình thức hạn chế của cân bằng Nash.
4
Website: http://www.docs.vn Email : lienhe@docs.vn Tel : 0918.775.368
Các công trình của Cournot đánh dấu sự chuyển đổi từ kinh tế cổ điển qua
kinh tế tân cổ điển. Cả hai thuyết đều quan tâm đến sản xuất, phân bố, trao
đổi và tiêu thụ của cải (của cải theo nghiã hàng hoá). Các kinh tế gia cổ
điển chú ý đến sản xuất và phân phối của cải qua thời gian. Họ nhấn mạnh
tỷ lệ tăng truởng dân số và nguồn lực vật chất, và xem xét hậu quả của các
nhân tố này lên tiến bộ kinh tế cũng như phúc lợi của nhân dân và xã hội.
Các kinh tế gia tân cổ điển ít quan tâm đến các khiá cạnh động. Thay vào
đó, họ đặt câu hỏi: “trong một nền kinh tế với dân số có sở thích, nguồn
lực và kỹ thuật cho sẵn, làm sao các nguồn lực có thể phân phối qua một
hệ thống thị trường để cực đại hoá sự thoả mãn của người tiêu thụ?”.
Ngày nay, sự chuyển đổi từ kinh tế cổ điển qua tân cổ điển là sự xê dịch từ
phân tích kinh tế vĩ mô sang vi mô. Đường hướng mới này có thể giải
quyết một cách toán học bằng phương pháp giải tích. Walras (1874) lý
luận: “Chỉ có toán mới có thể giúp chúng ta hiểu ý nghĩa của điều kiện hữu
dụng tối đa (maximum utility).”
Kinh tế tân cổ điển khởi đầu với ba kinh tế gia là : Stanley Jevon (Anh),
Carl Menger (Áo) và Léon Walras (Pháp). Ba kinh tế gia này thường được
xem là ông tổ của “Cách mạng Biên tế” (Marginalist Revolution). Danh từ
biên tế liên quan đến kết quả toán của điều kiện biên tế cho cân bằng thị
trường. Quan trọng nhất trong ba kinh tế gia này là Walras. ông đã khám
phá ra lý thuyết cân bằng tổng thể .Thuyết này giải thích quân bình của
một hệ thống kinh tế thị trường qua quá trình điều chỉnh giá cả mà trong đó
các tác nhân kinh tế riêng rẽ không thể ảnh hưởng lên giá thị trường. Nói
tóm gọn, Walras đã xếp đặt một chương trình nghiên cứu mà rất nhiều kinh
tế gia thế kỷ 20 đã theo đuổi. Cùng với học trò là Vilfredo Pareto, Walras
sáng lập trường phái Lausanne, có thể xem là trường phái kinh tế toán đầu
tiên trên thế giới.
Từ khi kinh tế tân cổ điển xuất hiện đến nay, phấn lớn những đóng góp
quan trọng nhất cho lý thuyết kinh tế là từ kinh tế gia có đầu óc toán học.
Những kinh tế gia này đều xem toán là cần thiết và không thể thiếu. Hai
ngoại lệ đáng chú ý là hai kinh tế gia Anh, Alfred Marshall và John
Maynard Keynes .Tuy Marshall đã mang tính nghiêm túc của toán vào
kinh tế, nhưng ông tỏ vẻ nghi ngờ vai trò của toán trong kinh tế. Ông cho
rằng các biến số thật trong đời sống quá nhiều và tương hỗ với nhau do
đó các cố gắng toán hoá sẽ làm vấn đề quá phức tạp, không nghiên cứu
được, và nếu phải bỏ sót để vấn đề có thể phân tích được, thì lời giải thích
sẽ trở thành thiếu thực tế. Keynes, giống như Marshall, ban đầu được đào
5
Website: http://www.docs.vn Email : lienhe@docs.vn Tel : 0918.775.368
tạo để trở thành một nhà toán học và cũng nghi ngờ vai trò của toán trong
kinh tế. Keynes chỉ dùng một ít toán và lý luận rằng khả năng của toán
trong việc thu hút nội dung của kinh tế rất là hạn chế. Việc này dễ hiểu
được vì quan tâm chính của Keynes là chính sách kinh tế và một kinh tế
gia muốn phát biểu các đề xuất cho các vần đề kinh tế khẩn cấp, phải dùng
ngôn ngữ càng ít toán càng tốt. Nhưng cũng vì thế mà công trình vĩ đại
nhất của Keynes (1936) có nhiều chỗ không rõ ràng và mâu thuẫn. Dù sao
Keynes cũng dặt nền móng cho kinh tế vĩ mô hiện đại và mở màn cho một
chương trình nghiên cứu thúc đẩy vai trò của toán trong kinh tế và ứng
dụng của toán trong các công trình thực nghiệm.
Trong thế kỷ 20, các công trình kinh tế toán to lớn nhất xuất hiện sau Thế
chiến Thứ hai, ba thí dụ tiêu biểu nhất đó là :
Thí dụ thứ nhất, Paul Samuleson, lý thuyết gia kinh tế lỗi lạc nhất của thế
kỷ 20. Samuelson (1947) được nhiều người xem là cha đẻ của kinh tế toán
học hiện đại qua cuốn sách “ Nền tảng của Phân tích Kinh tế “, dùng ngôn
ngữ toán nghiêm túc thống nhất các thuyết kinh tế bằng một vài nguyên lý
cơ bản, và đặt nền tảng cho các nghiên cứu kinh tế toán hiện đại .
Thí dụ thứ nhì là mô hình cạnh tranh hoàn hảo Arrow–Debreu–McKenzie
(ADM), dựa trên các công trình của Arrow & Debreu (1954) và Lionel
McKenzie (1954). Mô hình ADM là mô hình trung tâm của lý thuyết cân
bằng tổng thể và thường được dùng làm một tham khảo tổng quát cho các
mô hình kinh tế vi mô khác. So sánh với các mô hình trước đó, mô hình
ADM dùng một ý niệm hàng hoá rất tổng quát, phân biệt hàng hoá bằng
không gian lẫn thời gian .
Thí dụ thứ ba là lý thuyết trò chơi. nhà bác học von Neumann được xem
là cha đẻ của thuyết trò chơi vì ông đã phát triển khá hoàn hảo và phổ
thông hoá thuyết này. Von Neumman đề xuất thuyết trò chơi như một thứ
ngôn ngữ mới dùng để biểu diễn và giải quyết các vấn đề kinh tế một cách
chính xác. Lối tư duy mới này nhấn mạnh sự tương tác chiến lược giữa các
tác nhân kinh tế (cá nhân, doanh nghiệp, chính phủ, …). Như vậy, lý thuyết
cân bằng tổng thể có thể xem là một trường hợp đặc biệt của thuyết trò
chơi.
Ngoài von Neumann, nhiều toán gia khác cũng tìm cách ứng dụng toán
thuần lý vào lĩnh vực kinh tế trong nửa sau thế kỷ 20. Nổi tiếng nhất có lẽ
là toán gia Steve Smale. Smale đã đóng góp rất nhiều cho lý thuyết kinh tế
6
Website: http://www.docs.vn Email : lienhe@docs.vn Tel : 0918.775.368
trong thập kỷ 1970. Ông đã thành công trong việc mang giải tích toàn bộ
vào những nghiên cứu về cân bằng kinh tế tổng quát.
2_ Hạn chế của toán trong kinh tế
Để có một cái nhìn khách quan và toàn diện hơn, chúng ta xét qua vài thí
dụ về các ứng dụng toán không thành công lắm trong kinh tế. Hai thí dụ
tiêu biểu nhất có lẽ là thuyết tai biến (catastrophe theory) và thuyết hỗn
độn (chaos theory). Sau nhiều thập kỷ phát triển dần dần, thuyết tai biến
chính thức xuất hiện vào đầu thập kỷ 1970 qua những công trình đột phá
của René Thom (1969) Sau đó, thuyết tai biến đã được áp dụng trong khá
nhiều nghiên cứu kinh tế, thí dụ như thị trường chứng khoán, thị trường
độc quyền, chu trình kinh tế, mô hình lạm phát, đầu cơ hối suất, thuyết
tăng trưởng, kinh tế thành phố và vùng, kinh tế sinh thái, … Vào cuối thập
kỷ 1970, nhiều tác giả bắt đầu chỉ trích sự lạm dụng của thuyết tai biến
(không phải chỉ trong kinh tế) vì ba lý do chính như sau :
Thuyết tai biến dựa quá nhiều trên các phương pháp định tính, nhiều ứng
dụng đòi hỏi các định lượng hoá giả mạo hay phương pháp thống kê không
thích hợp, và rất nhiều mô hình không thoả những điều kiện toán cần cho
thuyết tai biến.
Ngày nay, phần đông các nhà kinh tế có một cái nhìn đúng đắn và lạc quan
hơn về thuyết tai biến. Tuy không phải là kỹ thuật tổng quát có thể dùng
cho mọi trường hợp, thuyết tai biến vẫn đóng một vai trò nhất định nào đó
trong việc nghiên cứu hiện tượng bất liên tục động trong kinh tế .
Giống như thuyết tai biến, thuyết hỗn độn có nguồn gốc sâu xa từ những
công trình nghiên cứu về toán và cơ học thiên thể của “toán gia phổ quát
cuối cùng” Henri Poincaré vào cuối thế kỷ 19. Poincaré nhận thấy rằng
các hệ thống xác định, động, phi tuyến, đơn giản dưới một số điều kiện nào
đó tiến hoá một cách có vẻ như ngẫu nhiên, phức tạp. Những hệ thống này
rất nhạy cảm với điều kiện ban đầu và do đó dự đoán dài hạn với bất kỳ độ
chính xác nào đòi hỏi các điều kiện ban đầu được định rõ tới mức chính
xác vô cực. Bắt đầu từ giữa thập kỷ 1970, thuyết hỗn độn đã được áp dụng
vào rất nhiều lĩnh vực kinh tế khác nhau.
Ứng dụng của thuyết hỗn độn trong kinh tế gây ra vài trở ngại chính như
sau :
7
Website: http://www.docs.vn Email : lienhe@docs.vn Tel : 0918.775.368
Thứ nhất, sự có mặt của thuyết hỗn độn làm dự đoán dài hạn không khả
thi, và người dự báo sẽ phải trả giá cực kỳ cao nếu chỉ muốn tăng tầm xa
dự báo lên chút ít. Tính không dự đoán dài hạn này cũng trái ngược với
giả thiết kỳ vọng hợp lý (rational expectations), một ý niệm cơ bản trong
các lý thuyết kinh tế hiện đại.
Thứ hai, các nhà nghiên cứu chưa tìm được bằng chứng có tính thuyết phục
về sự hiện diện của hỗn độn xác định trong các chuỗi dữ kiện kinh tế thời
gian. Nếu như thế, các nhà kinh tế có nên tiếp tục bỏ công sức vào thuyết
hỗn độn hay nên khảo sát các dạng động lực phi tuyến khác với khả năng
tiên đoán tốt hơn? Tuy nhiên, thuyết hỗn độn nói chung không bị các nhà
kinh tế tránh né như thuyết tai biến. Một số nhà kinh tế cho rằng thuyết
hỗn độn vẫn cần cho lý thuyết kinh tế, nhưng các dụng cụ và phương pháp
nghiên cứu phải khác hơn những kỹ thuật dùng trong quá khứ.
3 _ vai trò của toán trong nghiên cứu kinh tế
Toán chỉ là một phương tiện, không phải là cứu cánh, và do đó tầm nhìn về
sự kiện và ý nghĩa phải nhất thiết đi trước việc phân tích vấn đề (hai thí dụ
tốt cho điểm này là tác phẩm “Sự Thịnh vượng của các Quốc gia” của
Adam Smith (1776) và “Lý thuyết Chung” của Keynes (1936))
Phẩm chất của một lý thuyết kinh tế hoàn toàn không tùy thuộc vào chiều
sâu hay tính phức tạp của nội dung toán trong thuyết đó (hai thí dụ là Định
luật Coase (1937) và Thuyết Thị trường Hàng hoá xấu của George Akerlof
(1970)).
Cuộc tranh cãi về vai trò của toán trong kinh tế học đúng ra không phải
tranh luận về nên hay không nên dùng toán trong kinh tế, mà là về “dùng
bao nhiêu toán” và “dùng toán loại nào” (hình học, đại số, giải tích, thống
kê, toán số). Không phải ngẫu nhiên mà Francis Edgeworth (1881) gọi giải
tích là “tiếng mẹ đẻ của kinh tế học”.
Để thấy rõ được vai trò của toán trong kinh tế chúng ta xẽ đi xem xét hai
thí dụ sau :
Thí dụ thứ nhất : dựa trên công trình của Allingham và Sandmo (1972) về
sự trốn thuế. Mô hình này đã gây một tiếng vang khá lớn trong lý thuyết tài
chính công và đã được nới rộng rất nhiều. sau đây chúng ta xẽ đi xem xét
8
NỘI DUNG * * I _ Ứng dụng của toán học và 1 số ít mô hìnhtoán học trong kinh tế. 1 _ Lịch sử của toán trong kinh tế họcSự ứng dụng của toán trong kinh tế không phải là một hiện tượng kỳ lạ mới. Thật ra toán đã đóng vai trò đáng kể trong kinh tế học xấp xỉ một thế kỷnay mặc dầu những thuyết kinh tế cổ xưa đã được tăng trưởng và mạng lưới hệ thống hoámà không cần dùng toán. Lấy thí dụ, hai kinh tế gia cổ xưa lớn nhất làAdam smith và David Ricardo, chỉ dùng thí dụ bằng số để minh hoạ cáclý thuyết của mình. Họ phối hợp những quan sát trong thực tiễn một cách phi toánvới những lý luận suy diễn về liên hệ nhân quả để lý giải mạng lưới hệ thống kinh tếlàm việc như thế nào. Ngay trong khu công trình của những kinh tế gia cổ xưa vĩđại ở đầu cuối như John stuart Mill và Karl Marx, công thức toán hay đồ thịcũng chỉ là một loại tốc ký hay phương cách trình diễn mà thôi. Một ngoạilệ đáng kể là thuyết dân số của Thomas Malthus ( 1798 ) trong đó Malthuslập luận rằng dân số tăng theo cấp số nhân trong khi thực phẩm chỉ tăngtheo cấp số cộng. Ngày nay, phần đông những nhà kinh tế chấp thuận đồng ý rằng Augustin Cournot, triết giavà toán gia Pháp, xứng danh nhận thương hiệu “ cha đẻ của kinh tế toánhọc ”. Cournot ( 1838 ) được coi là khai sinh ra kinh tế toán học vì ông đãhệ thống hoá sự ứng dụng ký hiệu, công thức và lý luận toán trong kinh tế. Sau thời Cournot, hầu hết những kinh tế gia nổi tiếng đều phải sử dụng toán, không ít thì nhiều, trong việc tăng trưởng và truyền đạt những triết lý củamình. Cournot được xem là một trong những kinh tế gia tiên phong đã thànhcông trong việc xây dựng một triết lý giá trị đồng nhất qua những phân tíchvề tiêu thụ. Một vài góp phần đơn cử của ông cho kinh tế gồm có : ý niệmhàm và xác xuất trong nghiên cứu và phân tích kinh tế, hàm cầu, hàm cung, thuyết độcquyền và lưỡng độc quyền. Cũng nên nhắc là thuyết lưỡng độc quyền củaCournot ghi lại trong bước đầu tráng lệ của thuyết game show và giải phápcủa Cournot là một hình thức hạn chế của cân đối Nash. Website : http://www.docs.vn E-Mail : lienhe@docs.vn Tel : 0918.775.368 Các khu công trình của Cournot ghi lại sự quy đổi từ kinh tế cổ xưa quakinh tế tân cổ xưa. Cả hai thuyết đều chăm sóc đến sản xuất, phân bổ, traođổi và tiêu thụ của cải ( của cải theo nghiã hàng hoá ). Các kinh tế gia cổđiển chú ý quan tâm đến sản xuất và phân phối của cải qua thời hạn. Họ nhấn mạnhtỷ lệ tăng truởng dân số và nguồn lực vật chất, và xem xét hậu quả của cácnhân tố này lên văn minh kinh tế cũng như phúc lợi của nhân dân và xã hội. Các kinh tế gia tân cổ xưa ít chăm sóc đến những khiá cạnh động. Thay vàođó, họ đặt câu hỏi : “ trong một nền kinh tế với dân số có sở trường thích nghi, nguồnlực và kỹ thuật cho sẵn, làm thế nào những nguồn lực hoàn toàn có thể phân phối qua mộthệ thống thị trường để cực đại hoá sự thoả mãn của người tiêu thụ ? ”. Ngày nay, sự quy đổi từ kinh tế cổ xưa qua tân cổ xưa là sự xê dịch từphân tích kinh tế vĩ mô sang vi mô. Đường hướng mới này hoàn toàn có thể giảiquyết một cách toán học bằng chiêu thức giải tích. Walras ( 1874 ) lýluận : “ Chỉ có toán mới hoàn toàn có thể giúp tất cả chúng ta hiểu ý nghĩa của điều kiện kèm theo hữudụng tối đa ( maximum utility ). ” Kinh tế tân cổ xưa khởi đầu với ba kinh tế gia là : Stanley Jevon ( Anh ), Carl Menger ( Áo ) và Léon Walras ( Pháp ). Ba kinh tế gia này thường đượcxem là ông tổ của “ Cách mạng Biên tế ” ( Marginalist Revolution ). Danh từbiên tế tương quan đến tác dụng toán của điều kiện kèm theo biên tế cho cân đối thịtrường. Quan trọng nhất trong ba kinh tế gia này là Walras. ông đã khámphá ra kim chỉ nan cân đối toàn diện và tổng thể. Thuyết này lý giải quân bình củamột mạng lưới hệ thống kinh tế thị trường qua quy trình kiểm soát và điều chỉnh Chi tiêu mà trong đócác tác nhân kinh tế riêng rẽ không hề tác động ảnh hưởng lên giá thị trường. Nóitóm gọn, Walras đã xếp đặt một chương trình điều tra và nghiên cứu mà rất nhiều kinhtế gia thế kỷ 20 đã theo đuổi. Cùng với học trò là Vilfredo Pareto, Walrassáng lập phe phái Lausanne, hoàn toàn có thể xem là phe phái kinh tế toán đầutiên trên quốc tế. Từ khi kinh tế tân cổ xưa Open đến nay, phấn lớn những đóng gópquan trọng nhất cho kim chỉ nan kinh tế là từ kinh tế gia có đầu óc toán học. Những kinh tế gia này đều xem toán là thiết yếu và không hề thiếu. Haingoại lệ đáng chú ý quan tâm là hai kinh tế gia Anh, Alfred Marshall và JohnMaynard Keynes. Tuy Marshall đã mang tính trang nghiêm của toán vàokinh tế, nhưng ông tỏ vẻ hoài nghi vai trò của toán trong kinh tế. Ông chorằng những biến số thật trong đời sống quá nhiều và tương hỗ với nhau dođó những nỗ lực toán hoá sẽ làm yếu tố quá phức tạp, không nghiên cứuđược, và nếu phải bỏ sót để yếu tố hoàn toàn có thể nghiên cứu và phân tích được, thì giải thuật thíchsẽ trở thành thiếu trong thực tiễn. Keynes, giống như Marshall, bắt đầu được đàoWebsite : http://www.docs.vn E-Mail : lienhe@docs.vn Tel : 0918.775.368 tạo để trở thành một nhà toán học và cũng hoài nghi vai trò của toán trongkinh tế. Keynes chỉ dùng một chút ít toán và lý luận rằng năng lực của toántrong việc lôi cuốn nội dung của kinh tế rất là hạn chế. Việc này dễ hiểuđược vì chăm sóc chính của Keynes là chủ trương kinh tế và một kinh tếgia muốn phát biểu những yêu cầu cho những vần đề kinh tế khẩn cấp, phải dùngngôn ngữ càng ít toán càng tốt. Nhưng cũng cho nên vì thế mà khu công trình vĩ đạinhất của Keynes ( 1936 ) có nhiều chỗ không rõ ràng và xích míc. Dù saoKeynes cũng dặt nền móng cho kinh tế vĩ mô văn minh và mở màn cho mộtchương trình điều tra và nghiên cứu thôi thúc vai trò của toán trong kinh tế và ứngdụng của toán trong những khu công trình thực nghiệm. Trong thế kỷ 20, những khu công trình kinh tế toán to lớn nhất Open sau Thếchiến Thứ hai, ba thí dụ tiêu biểu vượt trội nhất đó là : Thí dụ thứ nhất, Paul Samuleson, triết lý gia kinh tế lỗi lạc nhất của thếkỷ 20. Samuelson ( 1947 ) được nhiều người xem là cha đẻ của kinh tế toánhọc tân tiến qua cuốn sách “ Nền tảng của Phân tích Kinh tế “, dùng ngônngữ toán tráng lệ thống nhất những thuyết kinh tế bằng một vài nguyên lýcơ bản, và đặt nền tảng cho những nghiên cứu và điều tra kinh tế toán văn minh. Thí dụ thứ nhì là quy mô cạnh tranh đối đầu tuyệt vời và hoàn hảo nhất Arrow – Debreu – McKenzie ( ADM ), dựa trên những khu công trình của Arrow và Debreu ( 1954 ) và LionelMcKenzie ( 1954 ). Mô hình ADM là quy mô TT của kim chỉ nan cânbằng tổng thể và toàn diện và thường được dùng làm một tìm hiểu thêm tổng quát cho cácmô hình kinh tế vi mô khác. So sánh với những quy mô trước đó, mô hìnhADM dùng một ý niệm hàng hoá rất tổng quát, phân biệt hàng hoá bằngkhông gian lẫn thời hạn. Thí dụ thứ ba là kim chỉ nan game show. nhà bác học von Neumann được xemlà cha đẻ của thuyết game show vì ông đã tăng trưởng khá tuyệt đối và phổthông hoá thuyết này. Von Neumman yêu cầu thuyết game show như một thứngôn ngữ mới dùng để trình diễn và xử lý những yếu tố kinh tế một cáchchính xác. Lối tư duy mới này nhấn mạnh vấn đề sự tương tác chiến lược giữa cáctác nhân kinh tế ( cá thể, doanh nghiệp, chính phủ nước nhà, … ). Như vậy, lý thuyếtcân bằng tổng thể và toàn diện hoàn toàn có thể xem là một trường hợp đặc biệt quan trọng của thuyết tròchơi. Ngoài von Neumann, nhiều toán gia khác cũng tìm cách ứng dụng toánthuần lý vào nghành kinh tế trong nửa sau thế kỷ 20. Nổi tiếng nhất có lẽlà toán gia Steve Smale. Smale đã góp phần rất nhiều cho triết lý kinh tếWebsite : http://www.docs.vn E-Mail : lienhe@docs.vn Tel : 0918.775.368 trong thập kỷ 1970. Ông đã thành công xuất sắc trong việc mang giải tích toàn bộvào những nghiên cứu và điều tra về cân đối kinh tế tổng quát. 2 _ Hạn chế của toán trong kinh tếĐể có một cái nhìn khách quan và tổng lực hơn, tất cả chúng ta xét qua vài thídụ về những ứng dụng toán không thành công xuất sắc lắm trong kinh tế. Hai thí dụtiêu biểu nhất có lẽ rằng là thuyết tai biến ( catastrophe theory ) và thuyết hỗnđộn ( chaos theory ). Sau nhiều thập kỷ tăng trưởng từ từ, thuyết tai biếnchính thức Open vào đầu thập kỷ 1970 qua những khu công trình đột phácủa René Thom ( 1969 ) Sau đó, thuyết tai biến đã được vận dụng trong khánhiều nghiên cứu và điều tra kinh tế, thí dụ như đầu tư và chứng khoán, thị trườngđộc quyền, quy trình kinh tế, quy mô lạm phát kinh tế, đầu tư mạnh hối suất, thuyếttăng trưởng, kinh tế thành phố và vùng, kinh tế sinh thái, … Vào cuối thậpkỷ 1970, nhiều tác giả mở màn chỉ trích sự lạm dụng của thuyết tai biến ( không phải chỉ trong kinh tế ) vì ba nguyên do chính như sau : Thuyết tai biến dựa quá nhiều trên những phương pháp định tính, nhiều ứngdụng yên cầu những định lượng hoá trá hình hay chiêu thức thống kê khôngthích hợp, và rất nhiều quy mô không thoả những điều kiện kèm theo toán cần chothuyết tai biến. Ngày nay, phần đông những nhà kinh tế có một cái nhìn đúng đắn và lạc quanhơn về thuyết tai biến. Tuy không phải là kỹ thuật tổng quát hoàn toàn có thể dùngcho mọi trường hợp, thuyết tai biến vẫn đóng một vai trò nhất định nào đótrong việc nghiên cứu và điều tra hiện tượng kỳ lạ bất liên tục động trong kinh tế. Giống như thuyết tai biến, thuyết hỗn độn có nguồn gốc sâu xa từ nhữngcông trình nghiên cứu và điều tra về toán và cơ học thiên thể của “ toán gia phổ quátcuối cùng ” Henri Poincaré vào cuối thế kỷ 19. Poincaré nhận thấy rằngcác mạng lưới hệ thống xác lập, động, phi tuyến, đơn thuần dưới một số ít điều kiện kèm theo nàođó tiến hoá một cách có vẻ như như ngẫu nhiên, phức tạp. Những mạng lưới hệ thống nàyrất nhạy cảm với điều kiện kèm theo khởi đầu và do đó Dự kiến dài hạn với bất kể độchính xác nào yên cầu những điều kiện kèm theo bắt đầu được định rõ đến hơn cả chínhxác vô cực. Bắt đầu từ giữa thập kỷ 1970, thuyết hỗn độn đã được áp dụngvào rất nhiều nghành kinh tế khác nhau. Ứng dụng của thuyết hỗn độn trong kinh tế gây ra vài trở ngại chính nhưsau : Website : http://www.docs.vn E-Mail : lienhe@docs.vn Tel : 0918.775.368 Thứ nhất, sự xuất hiện của thuyết hỗn độn làm Dự kiến dài hạn không khảthi, và người dự báo sẽ phải trả giá cực kỳ cao nếu chỉ muốn tăng tầm xadự báo lên chút ít. Tính không Dự kiến dài hạn này cũng trái ngược vớigiả thiết kỳ vọng hài hòa và hợp lý ( rational expectations ), một ý niệm cơ bản trongcác kim chỉ nan kinh tế tân tiến. Thứ hai, những nhà nghiên cứu chưa tìm được vật chứng có tính thuyết phụcvề sự hiện hữu của hỗn độn xác lập trong những chuỗi dữ kiện kinh tế thờigian. Nếu như thế, những nhà kinh tế có nên liên tục bỏ công sức của con người vào thuyếthỗn độn hay nên khảo sát những dạng động lực phi tuyến khác với khả năngtiên đoán tốt hơn ? Tuy nhiên, thuyết hỗn độn nói chung không bị những nhàkinh tế tránh né như thuyết tai biến. Một số nhà kinh tế cho rằng thuyếthỗn độn vẫn cần cho kim chỉ nan kinh tế, nhưng những dụng cụ và phương phápnghiên cứu phải khác hơn những kỹ thuật dùng trong quá khứ. 3 _ vai trò của toán trong điều tra và nghiên cứu kinh tếToán chỉ là một phương tiện đi lại, không phải là cứu cánh, và do đó tầm nhìn vềsự kiện và ý nghĩa phải nhất thiết đi trước việc nghiên cứu và phân tích yếu tố ( hai thí dụtốt cho điểm này là tác phẩm “ Sự Thịnh vượng của những Quốc gia ” củaAdam Smith ( 1776 ) và “ Lý thuyết Chung ” của Keynes ( 1936 ) ) Phẩm chất của một triết lý kinh tế trọn vẹn không tùy thuộc vào chiềusâu hay tính phức tạp của nội dung toán trong thuyết đó ( hai thí dụ là Địnhluật Coase ( 1937 ) và Thuyết Thị trường Hàng hoá xấu của George Akerlof ( 1970 ) ). Cuộc tranh cãi về vai trò của toán trong kinh tế học đúng ra không phảitranh luận về nên hay không nên dùng toán trong kinh tế, mà là về “ dùngbao nhiêu toán ” và “ dùng toán loại nào ” ( hình học, đại số, giải tích, thốngkê, toán số ). Không phải ngẫu nhiên mà Francis Edgeworth ( 1881 ) gọi giảitích là “ tiếng mẹ đẻ của kinh tế học ”. Để thấy rõ được vai trò của toán trong kinh tế tất cả chúng ta xẽ đi xem xét haithí dụ sau : Thí dụ thứ nhất : dựa trên khu công trình của Allingham và Sandmo ( 1972 ) vềsự trốn thuế. Mô hình này đã gây một tiếng vang khá lớn trong triết lý tàichính công và đã được nới rộng rất nhiều. sau đây tất cả chúng ta xẽ đi xem xét